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Introduction

Recently, much attention has focused on particular types of coating, aimed to
reduce the skin friction drag in laminar or turbulent flows [1], with a variety of
engineering applications. The working mechanism is based on the their super-
hydrophobic behavior, which is well know in Nature, since the description of the
lotus effect by Barthlott and Neinhuis [2].

Figure 1: A lotus leaf showing a super-hydrophobic behavior, together with details of wall texture at microscope.

The key feature is the presence of a micro- or nano-structured surface that traps
the air into small pockets over which the water can flow with low friction. The
persistence of this condition, called Cassie-Baxter state, is as crucial as difficult to
maintain in time since the gas layer can easily depleted. The aim of this research
is to develop a computation model, based on a multiscale approach, in order to
characterize the drag reduction induced by super-hydrophobic surfaces.

The multiscale approach

The study is carried out by solving:

• One microscopic problem, which describes the flow in the proximity of the
wall protrusions. The goal is to compute the protrusion heights λ|| and
λ⊥, which quantify the effectiveness of the wall structures in term of drag
reduction.

• One macroscopic problem, which evaluates the effect of super-hydrophobic
surfaces by imposing homogenized boundary conditions at the walls of a test
channel. The boundary conditions requires the protrusion heights values to
be derived from the microscopic problem.

• In order to avoid mathematical and technical difficulties, the wall texture is
assumed periodic along the spanwise direction and the interface is assumed
to evolve slowly in x.

Figure 2: Typical surface corrugation studied. b is the spanwise periodicity of the wall pattern and w is the thickness of a micro-channel.

The microscopic problem

The problem is governed by the Stokes equation, which can be decoupled into two
parts, called transverse and longitudinal problem

Figure 3: Geometry, governing equations and boundary conditions for the transverse (center) and the longitudinal (right) problems.
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Boundary integral formulation

We use the boundary integral method to solve for the transverse and the longitudinal
problems. The velocity field in a generic domain may be reconstructed using only
the values of the velocity, u, and stress fields, f , on the closed boundary of the
domain. This can be done introducing two integral operators, called single-layer
,FSLP , and double-layer ,FDLP , potentials [3]. After mathematical manipulation,
the governing equations can be recast in integral form as

αuj(x0) = −FSLPj (x0, f ; W)−FSLPj (x0, f ; T) + F̂DLPj (x0, u; T)

−FSLPj (x0,∆f ; I) + (λ− 1)F̂DLPj (x0, u; I)

αu(x0) = −λFSLP(x0,∇u · n; W3) + F̂DLP(x0, u; T)

−FSLP(x0,∇u · n; W1 + W2 + T) + (λ− 1)F̂DLP(x0, u; I)

with:

α = 1+λ
2
, if x0 ∈ I,

α = 1
2
, if x0 ∈ T ∪W1 ∪W2,

α = λ
2
, if x0 ∈ W3,

α = λ, if x0 ∈ Ω2/{T + I + L + R + W1 + W2},
α = 1, if x0 ∈ Ω1/{W3 + I}.

Solution in a microscopic unit cell

We calculate the value of protrusion heights for different rigidity of the fluid inter-

face, express in term of the capillary numberCa =
µuτ

σ
and different air fractions

trapped into the cavity.
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Figure 4: Computed velocity field for a flow over super-hydrophobic surfaces and associated protrusion heights for different air fractions
and capillary numbers.

The macroscopic problem

Direct numerical simulations in a standard channel of dimension 6H×2H×3H
are employed to measure the drag reduction induced by the super-hydrophobic
coating. The boundary conditions at channel lower wall reads
u = λ̃||

∂u

∂y
, λ̃|| =

b

H
λ||

v = 0,

w = λ̃⊥
∂w

∂y
, λ̃⊥ =

b

H
λ⊥.
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Figure 5: (a-b) Iso-surfaces of the Q-criterion colored with the streamwise velocity component; (c) Comparison between DNS and exper-
iments by Park et al. [4]. Blue and red lines represent the least square fit of the experimental data; black solid line is the range of values

achieved at GF =
w

b
= 0.5 for different values of the spanwise texture periodicity in wall unit b+. Crosses are additional simulations at

different values of GF.
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