
SoftwareX 13 (2021) 100655

D

s
c
a
g
m
t
m

l
d
p

j

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

FLUBIO—An unstructured, parallel, finite-volume based Navier–Stokes
and convection–diffusion like equations solver for teaching and
research purposes
Edoardo Alinovi, Joel Guerrero ∗

ICCA, Scuola Politecnica, University of Genoa, 1 via Montallegro, 16145 Genoa, Italy

a r t i c l e i n f o

Article history:
Received 14 September 2020
Received in revised form 20November 2020
Accepted 29 December 2020

Keywords:
Finite volume method
CFD
Convection–diffusion
Navier–Stokes
PETSc

a b s t r a c t

FLUBIO is a parallel, unstructured, finite-volume based solver for the solution of the Navier–Stokes
equations and convection–diffusion like equations. The solver is written using modern Fortran (2003+
standard), it is object-oriented, and is organized in such a way that it is easy to understand and modify.
The solver is targeted at students, academics, personal users and practitioners to help them understand
the general theory behind modern CFD solution methods and discretization techniques. The solver is
also general and capable enough to deal with industrial and academic problems found in the field of
fluid dynamics.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version version 1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00046
Legal Code License CC BY-NC
Code versioning system used Git
Software code languages, tools, and services used Fortran, MPI, PETSc, JSON, VTK
Compilation requirements, operating environments & dependencies Unix-Linux like OS, gfortran, MPI, PETSc. The installation instructions are

provided in the document FLUBIO_INSTALL.pdf located in the repository
If available Link to developer documentation/manual https://gitlab.com/alie89/flubio-code-fvm
Support email for questions Gitlab issue tracker section

1. Motivation and significance

Computational Fluid Dynamics (CFD) deals with the numerical
olution of the governing equations of fluid dynamics. This dis-
ipline finds a wide range of applications within the aerospace,
utomotive, naval, chemical, biomedical, pharmaceutical, energy
eneration, and environmental industries, among many. Further-
ore, it is an essential tool for academic research in any field

hat deals with fluid dynamics, parallel computing, and numerical
ethods.
Among the numerical methods used to solve the conservation

aws, which are the base of the governing equations of fluid
ynamics, maybe the finite volume method (FVM) is the most
opular one. Its popularity relies on its theoretical simplicity and

∗ Corresponding author.
E-mail addresses: edoardo.alinovi@dicca.unige.it (Edoardo Alinovi),

oel.guerrero@unige.it (Joel Guerrero).

the fact that it enforces mass conservation (local and global).
The FVM method is the kernel of many commercial and open-
source CFD solvers, to name a few, Ansys Fluent [1], StarCCM+ [2],
OpenFOAM [3], and SU2 [4].

As any other numerical technique, the FVM is strongly linked
to computer science, since the bridge between theory and prac-
tice takes the form of scientific software. Writing a solver, even
if it is a simple one used to solve the convection–diffusion equa-
tion, is the most instructive task that one could do in order to
understand the details of the theory behind the FVM and to
become functional in the use of modern programming languages
and parallel computing.

Among many of the open-source CFD solvers available, per-
haps OpenFOAM [3] and SU2 [4] are the most popular ones.
These software libraries are well designed and offer a broad
set of capabilities that allow new users to deal with complex

multi-physics problems and advanced optimization techniques

ttps://doi.org/10.1016/j.softx.2020.100655
352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2020.100655
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100655&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00046
https://gitlab.com/alie89/flubio-code-fvm
mailto:edoardo.alinovi@dicca.unige.it
mailto:joel.guerrero@unige.it
https://doi.org/10.1016/j.softx.2020.100655
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Edoardo Alinovi and Joel Guerrero SoftwareX 13 (2021) 100655

f
u
w
t
i
p
v

m
b
s
i
N
T
d
e
a
i
i
s
a
d
c
t

d
a
a
d
O
d
p
o

o
e
i
a
a
t

u
t

Table 1
Different discretization techniques implemented in FLUBIO. Further information about the discretization techniques can be found in
Refs. [5–9].
Term Brief description

Time derivative Methods for iterative and time marching. Methods implemented: Steady-state, Euler,
Backward differencing, Crank–Nicolson.

Diffusive term Weighted central differences with non-orthogonal corrections. Three methods available,
namely, over-relaxed, orthogonal correction, and minimum correction.

Convective term State of the art convective schemes applicable to unstructured meshes. Many methods
implemented, to name a few, upwind, central differences, second-order upwind, QUICK,
minmod, vanleer, superbee. Fluxes are assembled in a fully implicit way or by using the
deferred correction approach.

Gradient terms Cell-based Green–Gauss and least-squares. To enforce monotonicity and improve solution
stability, gradient limiters can be used. Face-limited and cell-limited versions are available.

(e.g., adjoint optimization). However, they are difficult to un-
derstand, as many of the implementation details are obfuscated
due to the use of advanced programming techniques that entry-
level users do not understand. Also, the lack of documentation
makes it even harder to understand how to use or program on
these libraries. In addition, the information (and misinformation)
spread among many forums (often non-official ones) can confuse
new users. Doing simple modifications to these libraries can be a
daunting task for newcomers.

As a result, many students and practitioners are often left to
ace complex CFD solvers with little support and a very poor
nderstanding of what is happening under the hood. And even
orse, many beginner CFD practitioners get frustrated and try to
ackle complex problems using CFD solvers with limited capabil-
ties, do not use parallel computing, are not compatible with the
hysics of interest, or have not undergone proper validation and
erification.
With the aim at offering an easy to understand and easy to

odify CFD solver, and at the same time with discretization capa-
ilities similar to those available in the most popular open-source
olvers available in the web (e.g., OpenFOAM [3] and SU2 [4]), we
ntroduce FLUBIO, an unstructured, parallel, finite volume based
avier–Stokes and convection–diffusion like equations solver.
he solver is cell-centered, and it uses segregated methods to
eal with the pressure–velocity coupling of the Navier–Stokes
quations (e.g., SIMPLE method [10] and PISO method [11]). To
void the checkerboard instability, the Rhie–Chow interpolation
s used [12]. Many high-order and high-resolution methods are
mplemented, which guarantees at least second-order accurate
olutions. The time-derivative, convective terms, diffusive terms,
nd gradient terms appearing in the governing equations can be
iscretized in a term-by-term basis; that is, the user can use any
ombination of different numerical schemes. Finally, to enforce
he monotonicity principle, slope limiters are implemented.

FLUBIO can deal with two-dimensional and three-dimensional
omains. It uses unstructured meshes, and in theory, can handle
ny cell element type (tetrahedrons, hexes, prisms, pyramids,
nd general polyhedrons). It has been fully parallelized by using
omain decomposition and the message passing interface library
pen MPI [13]. To solve the linear systems arising from the
iscretization of the governing equations, FLUBIO uses the high
erformance computing library PETSc [14], which is a collection
f routines for efficient and scalable scientific computing.
FLUBIO is written using plain Fortran 2003 standard, and with

bject orientation in mind. Derived types and classes are used to
ncapsulate data and methods at the core solver level, making
t easy to reuse and modify. Inheritance is kept at a single level
lmost everywhere. Bespoke names for variables and subroutines
re employed, and the same coding standard is adopted all over
he code for clarity and understandability.

Finally, the code has been extensively commented, so new
sers will not get lost when reading the source code. In addi-

using Ford [15]. We aim to translate what can be studied in the
textbooks into an easy to read computer code, with no tricks,
and in the simplest possible way to maintain a close link with
theory. The code has been thought to provide a fast access to
the core discretization techniques used in CFD. On the one hand,
newcomers in the field of CFD and computer programming can
get a better view of the building blocks and how to implement
CFD solvers. On the other hand, experienced users can take ad-
vantage of the code to develop more sophisticated solvers for
their research activity in the field of CFD.

2. Software description

The general transport equation (Eq. (1)), integrated over a
given control volume VP , is used throughout this discussion to
briefly describe the FVM discretization practices underlying FLU-
BIO. In this equation, φ is the transported quantity, i.e., veloc-
ity, pressure, temperature, and so on, and Γφ is the diffusion
coefficient of the transported quantity.∫

VP

∂ρφ

∂t
dV  

time derivative

+

∫
VP

∇ · (ρuφ) dV  
convective term

−

∫
VP

∇ ·
(
ρΓφ∇φ

)
dV  

diffusive term

. . .

. . . =

∫
VP

Sφ (φ) dV  
source term

(1)

FLUBIO has several dedicated modules covering state-of-the-
art discretization techniques targeting each term appearing in
Eq. (1), which serves as a building block for any solver imple-
mented in FLUBIO. An overview of FLUBIO’s discretization options
is given in Table 1.

After spatial and temporal discretization of the governing
equations in every control volume of the domain, a system of
differential algebraic equations of the form,

[A] [φ] = [R] , (2)

is assembled. In Eq. (2), [A] is a sparse matrix with coefficients aP
in the diagonal and aN off the diagonal, [φ] is the vector contain-
ing the unknown quantity φ in all control volumes, and [R] is the
vector containing boundary conditions, source terms, and explicit
contributions arising from the discretization process. The coeffi-
cients aP include the contribution from all terms corresponding
to [φn

P ], that is, the temporal derivative, convection and diffusion
terms, and the linear part of the source term corresponding to the
current time-step n. The coefficients aN include the contributions
corresponding to each term of the neighboring control volumes.
The summation is done over all the control volumes that share
a face with the current control volume VP . The right-hand side
of Eq. (2) (the vector R), includes all terms that can be evaluated
without knowing the new value of the vector [φ], namely, the
constant part of the source term, boundary conditions contribu-
tion, and the explicit contributions at the old-time step n − 1 of
ion, easy to browse documentation is automatically generated

2



Edoardo Alinovi and Joel Guerrero SoftwareX 13 (2021) 100655

t
w
n
t
w
i
l

i
M
p
c
u
t
p
a
u
c

h
p
u
s
c
F

t
c
d
r
t
w
i
W
d

a
t
t
m
e

3

f
a
d
F
t
a
e
t
F

F
d
i
c
o
c
c

a
F
a

he convective and diffusive terms. When this system is solved,
e obtain the solution for the vector [φ] at the new time step
. To solve the linear system arising from the discretization of
he governing equations (Eq. (2)), we use the library PETSc [14],
hich provides a set of efficient, highly scalable, and validated

terative solvers and preconditioners targeted for the solution of
arge sparse linear system.

FLUBIO has been parallelized using the standard message pass-
ng interface communications protocol, implemented in Open
PI [13]. In particular, non-blocking communication between
artitions is employed to exchange the values at neighboring
ells, which are essential for fields interpolation and fluxes eval-
ation. The non-blocking nature of the communication allows
he code to send messages and to receive messages from other
artitions, avoiding in this way deadlocks. The MPI functionalities
re implemented using low-level programming. Therefore, the
ser does not need to deal with MPI programming when using the
ode or when implementing new solvers or boundary conditions.
The solver supports fully unstructured meshes made up of

exes, prisms, tetras, and pyramids in 3D. In 2D, the solver sup-
orts quadrilateral and triangular elements. Hybrid meshes, made
p by any combination of the cell types mentioned above, are also
upported. In practice, the solver can support general polyhedral
ells, but this feature will be added as soon as a clear need arises.
or the moment, the solver does not handle hanging nodes.
FLUBIO does not provide built-in meshing capabilities, and in

he current state, it relies on the OpenFOAM mesh format. The
ode can handle both serial and decomposed meshes. The domain
ecomposition must be carried out within the OpenFOAM envi-
onment by using the application decomposePar. Together with
he mesh format, this is the only connection that FLUBIO shares
ith OpenFOAM. We are working on removing this constraint by

mplementing our own stand-alone decomposition application.
e are also working to offer support to more general mesh and
ata structure formats, such as CGNS [16] or HDF5 [17].
Finally, the most commonly used boundary conditions are

lready implemented, and others can be easily added by following
he existing templates. For further information about how to use
he solver, we invite the interested reader to read the tutorial
anual, which comes with the source code and is located in the
xamples directory.

. Software architecture

FLUBIO is implemented as a library with high-level functions
or the solution of the governing equations. In Fig. 1, we illustrate
nested diagram of the main building blocks in FLUBIO. This
iagram gives a general view of the hierarchical organization of
LUBIO, where first the mesh is read, followed by the fields ini-
ialization. At this point, interpolation and gradient operations are
pplied to the fields; then, each term appearing in the governing
quations is discretized, and finally, a solution method is selected
o solve the equations. All these modules, constitute a solver in
LUBIO.
Let us address in more detail the nested diagram depicted in

ig. 1. At the base level of FLUBIO’s organization, we find the mesh
ata structure and methods required to decompose the domain
nto a set of non-overlapping finite volume cells. This block is
omposed of a set of classes that can handle all the geometrical
perations involved in the FVM. To name a few, computation of
ells volume, cells center, faces area and surface normal vectors,
ell neighbors, interpolation weights, and so on.
Once the mesh has been defined, the fields at each cell center

nd boundary face can be assigned and initialized. A field in
LUBIO is the numerical counterpart of a variable. It can be seen
s a container on which many operations can be carried out, such

Fig. 1. FLUBIO building blocks.

as field interpolation and field gradient computation (which are
fundamental for the evaluation of the face fluxes).

Then, on top of the mesh and field operations, discretization
methods are defined for each term appearing in Eq. (2). In FLU-
BIO, many discretization methods are available, and they can be
assigned on a term-by-term basis. That is, each term appearing in
the governing equations can use different methods with different
order of accuracy.

Finally, different methods are implemented to deal with the
solution of the governing equations. For example, to deal with
the pressure–velocity coupling of the Navier–Stokes equations,
the user can use any of the following segregated methods, SIM-
PLE [10], SIMPLEC [18], or PISO [11].

In FLUBIO, solvers and user cases are located in different
directories, and they can be run from any directory in the system.
Thus, each case is organized in a stand-alone folder, which must
respect the following structure:

Case directory
BCs: boundary conditions input files.
grid: mesh.

processor*: decomposed mesh (for parallel runs).
serial: serial mesh.
bin: mesh saved in binary format.

physical: physical constants required by the solver.
settings: numerical settings and simulation controls.
postProc: post-processed fields and monitors.

fields: fields saved in binary format.
monitors: monitors and sampled output.
VTKfields: fields in binary XML format (*.vtu).

To understand how to use FLUBIO, the case structure, and basic
case setup, we encourage the interested user to read the Ford
documentation and the tutorial guide distributed with the source
code.

3.1. Software functionalities

FLUBIO comes with several solvers, each one dealing with
different governing equations commonly encountered in CFD, as
listed in Table 2. For turbulence modeling, both Reynolds Av-
eraged Navier–Stokes (RANS) and Large Eddy Simulation (LES)
3



Edoardo Alinovi and Joel Guerrero SoftwareX 13 (2021) 100655

T
S

a
(
g
e

r
r
t
s
t
e
t

4

4

d
b
l
a
a
F
l
d
T
h

able 2
olvers currently implemented in FLUBIO.
Solver Name Target equation Brief description

flubio_poisson
∂φ

∂t
= ∇ · Γ ∇φ + f Transient and steady state solver for the Poisson equation.

flubio_potential ∇
2φ = 0 Steady state potential flow solver.

flubio_transport
∂φ

∂t
+ ∇ · uφ = ∇ · Γ ∇φ + f Transient and steady state solver for the convection–diffusion equation.

flubio_simple ∇ · u = 0, ∇ · ρuu = −∇p + ∇ · µ∇u + f Steady state, incompressible, Navier–Stokes solver using the SIMPLE algorithm [10].

flubio_piso ∇ · u = 0,
∂ρu
∂t

+ ∇ · ρuu = −∇p + ∇ · µ∇u + f Transient, incompressible, Navier–Stokes solver using the PISO algorithm [11].

Fig. 2. (a) Computational domain and hybrid mesh used in the laminar flow around a cylinder study. (b) Close up of the hybrid mesh and refinement box in the
vicinity of the cylinder.

models are available. To name a few of the turbulence models
available, Spalart–Allmaras [19] and k−ω [20] for RANS modeling,
nd Smagorinsky [21] and Wall-adapting Local Eddy-viscosity
WALE) [22] for LES modeling. Due to the library’s modular or-
anization, new turbulence models can be added with minimal
ffort by simply following the existing templates.
To setup the simulation options and general run-time pa-

ameters, input files in ASCII format are parsed by the code at
un-time. Many control options are exposed to the user, some of
hem having default values to avoid overwhelming the user with
ettings, especially for those users using the library for the first
ime or those unfamiliar with the FVM. A list of all the dictionary
ntries, and whenever they are mandatory or not, is specified in
he documentation distributed along with the code.

. Illustrative examples

.1. Laminar flow around a cylinder

This test-case corresponds to the laminar flow around a cylin-
er at Re = 100, as described in Refs. [23,24]. The problem has
een made non-dimensional using the cylinder’s diameter D as
ength scale, the mean inlet flow velocity U0 as velocity scale,
nd the ratio D/U0 as the time scale. The results are compared
gainst OpenFOAM [3] (same mesh and equivalent setup), and
eatFlow [25]. The comparison with FeatFlow is made using grid
evel number 4 (as reported in Refs. [23,24]), which has 42016
egrees of freedom. In Fig. 2, we show the mesh used in this case.
he mesh is made up of triangular and rectangular elements and
as 59428 hybrid cells. We used 20 prism layers at the cylinder

wall, and at the top and bottom walls, we used 5 prism layers.
Also, a refinement box was used in the vicinity of the cylinder to
better resolve the near wake.

The backward Euler method is used to advance the simulation
in time, with a time step equal to 5 × 10−3 (non-dimensional
time units). The cell-based Green–Gauss method is used to ap-
proximate the gradients, while the second-order upwind scheme
is used for the convective term. The diffusive terms are computed
using centered differences with non-orthogonal corrections.

In Fig. 3, we show the contours of the velocity magnitude,
relative pressure, and vorticity fields. In the same figure, we also
show the time signal of the lift and drag coefficients. In Table 3,
we compare the outcome of FLUBIO against OpenFOAM and Feat-
Flow. In the table, the lift coefficient CL and drag coefficient CD,
are computed as follows,

CL =
L

0.5ρU2
∞
Sref

, CD =
D

0.5ρU2
∞
Sref

(3)

In Eq. (3), L is the lift force, D is the drag force, ρ is the
reference density, U∞ is the reference velocity, and Sref is a
reference surface (the cylinder diameter per unit depth in this
case). In overall, we obtained a good agreement with the data
found in the literature [23,24].

It is worth mentioning that this case is also used to demon-
strate the capability of FLUBIO to deal with hybrid meshes, as
well as the capacity of using non-uniform boundary conditions
(the inlet velocity corresponds to a parabolic profile, as described
in Refs. [23,24]).
4



Edoardo Alinovi and Joel Guerrero SoftwareX 13 (2021) 100655
Fig. 3. Laminar flow around a cylinder. (a) Contours of velocity magnitude (m/s). (b) Contours of relative pressure (Pa). (c) Contours of vorticity ωz (1/s). (d) Drag
coefficient CD and lift coefficient CL time series.

Table 3
Comparison of the aerodynamic coefficients CD and CL (per unit depth), and
Strouhal number (St). The superscripts min and max stand for minimum and
maximum value, respectively.
Solver CD Cmin

D Cmax
D CL Cmin

L Cmax
L St

FLUBIO 3.19 3.15 3.22 −1.048 1.013 −0.0175 0.29
OpenFOAM 3.20 3.17 3.24 −1.087 1.052 −0.0178 0.29
FeatFlow 3.16 3.13 3.20 −1.017 0.986 −0.0172 0.30

4.2. Turbulent flow past the ONERA-M6 wing

The ONERA-M6 wing is a widely used geometry in CFD to
validate compressible solvers [26–28]. For the moment, FLU-
BIO cannot deal with compressible flows; therefore, we added a
twist to this case in the sense that we worked with a turbulent
incompressible flow.

The computational domain and mesh are shown in Fig. 4, and
we used the mesh available from the NPARC verification and
validation archive [29]. The mesh consists of 294912 hexahedral
elements. The Reynolds number is equal to 106, and the wind
5



Edoardo Alinovi and Joel Guerrero SoftwareX 13 (2021) 100655
Fig. 4. Onera M6 test case. (a) Volume mesh and domain. (b) Wing surface mesh detail.

Fig. 5. Incompressible flow past the Onera-M6 wing. (a) Contours of pressure
coefficient Cp on the suction side. (b) Contours of pressure coefficient Cp on
the pressure side. (c) Pressure coefficient Cp at different span locations, where
the continuous lines represent the solution obtained with FLUBIO, and the dots
represent the solution obtained with OpenFOAM.

angle of attack is equal to 3.06◦. For turbulence modeling, we use
the RANS Spalart–Allmaras turbulence model. The discretization
method used is similar to that described in Section 4.1.

In Table 4, we show a comparison of the outcome obtained
with FLUBIO against OpenFOAM and Ansys Fluent [1]. In over-
all, the agreement is acceptable. In Fig. 5(a) and 5(b) we show

Table 4
Comparison of the wing drag coefficient CD and lift coefficient CL . The force
coefficients were computed using Eq. (3), where we used the wing projected
area as reference surface.
Solver CD CL

FLUBIO 6.7 × 10−3 8.65 × 10−2

OpenFOAM 7.1 × 10−3 8.47 × 10−2

Ansys Fluent 6.6 × 10−3 8.66 × 10−2

the contours of pressure coefficient Cp on the wing surface. In
Fig. 5(c), we compare the Cp distribution at four different loca-
tions of the wing, and as it can be seen, the agreement is good
between FLUBIO and OpenFOAM.

5. Software impact and conclusions

FLUBIO is a CFD solver targeted at students, academics, per-
sonal users and practitioners to help them understand the gen-
eral theory behind modern CFD solution methods and discretiza-
tion techniques. The solver is general and capable enough so
it can deal with simple problems involving the solution of the
convection–diffusion equation, or the solution of complex aca-
demic and industrial problems involving turbulence modeling.
The solver can be run in serial and parallel environments, and
thanks to the use of the PETSc library, FLUBIO is suitable for large
problems and potentially exascale computing.

FLUBIO is written using plain Fortran 2003 standard, with
object orientation and code re-usability in mind, making it easier
to understand and modify. The source code is commented exten-
sively, so users can know the scope of the functions, classes, and
derived types without the need of translating the source code into
actionable information.

FLUBIO addresses many of the frustrations and difficulties
found by the authors when using legacy solvers, and solvers
lacking documentation. We aim with this contribution to address
the need of many students and researchers to have a code easy to
understand and to modify. A solver to use to test hypotheses but
still able to deal with non-trivial geometries and complex flow
physics.

We have made a great effort into translating the standard FVM
and CFD theory found in the literature [5–9,30–36], into an easy
to read computer code, with no tricks, which maintains a close
link to the fundamentals of CFD and the FVM.

From a future perspective, plenty of exciting new develop-
ments are in the pipeline and we are happy to accept contribution

from the community interested in using this new framework.

6



Edoardo Alinovi and Joel Guerrero SoftwareX 13 (2021) 100655

D

c
t

A

f
w
w
F

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The authors kindly acknowledge the PETSc development team
or the helpful support received through their mailing list. EA
ould like to thank the authors of Ref. [5] for their inspirational
ork and for having provided such a detailed reference on the
VM.

eferences

[1] Ansys Academic Research, Release 2020, Help System, Ansys Fluent Theory
Guide. 2020.

[2] STAR-CCM+ 2020.1 Help Document. 2020.
[3] OpenFOAM. The Open Source CFD Toolbox. User Guide. URL http://www.

openfoam.org.
[4] Economon TD, Palacios F, Copeland SR, Lukaczyk TW, Alonso JJ. SU2:

An open-source suite for multiphysics simulation and design. AIAA J
2016;54(3):828–46. http://dx.doi.org/10.2514/1.J053813.

[5] Moukalled F, Mangani L, Darwish M. The finite volume method in com-
putational fluid dynamics. 1st ed. Springer International Publishing; 2016,
http://dx.doi.org/10.1007/978-3-319-16874-6.

[6] Ferziger JH, Peric M, Street RL. Computational methods for fluid dynamics.
4th ed. Springer International Publishing; 2020, http://dx.doi.org/10.1007/
978-3-319-99693-6.

[7] Blazek J. Computational fluid dynamics. 3rd ed. Butterworth-Heinemann;
2015.

[8] Versteeg H, Malalasekera W. An introduction to computational fluid
dynamics. The finite volume method. 2nd ed. Prentice Hall; 2007.

[9] Mazumder S. Numerical methods for partial differential equations. Finite
difference and finite volume methods. 1st ed. Academic Press; 2016.

[10] Patankar SV, Spalding DB. A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows. Int J Heat Mass
Transfer 1972;15(10):1787–806. http://dx.doi.org/10.1016/0017-9310(72)
90054-3.

[11] Issa RI. Solution of the implicitly discretized fluid flow equations by
operator-splitting. J Comput Phys 1985;62(1):40–65. http://dx.doi.org/10.
1016/0021-9991(86)90099-9.

[12] Rhie CM, Chow WL. Numerical study of the turbulent flow past an airfoil
with trailing edge separation. AIAA J 1983;21(11):1525–32. http://dx.doi.
org/10.2514/3.8284.

[13] Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V,
Kambadur P, Barrett B, Lumsdaine A, Castain RH, Daniel DJ, Graham RL,
Woodall TS. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In: Proceedings, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary. 2004. p. 97–104.

[14] Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L,
Dener A, Eijkhout V, Gropp WD, Karpeyev D, Kaushik D, Knepley MG,
May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF,
Zampini S, Zhang H, Zhang H. PETSc Users Manual. Tech. Rep. ANL-95/11
- Revision 3.13, Argonne National Laboratory; 2020, URL https://www.mcs.
anl.gov/petsc.

[15] MacMackin C. FORD. June 2018. http://dx.doi.org/10.5281/zenodo.1422473.
[16] CGNS. CFD Genral Notation System. URL https://cgns.github.io/.
[17] HDF5. Hierarchical data format version 5. URL http://www.hdfgroup.org/

HDF5.
[18] van Doormaal JP, Raithby GD. Enhancements of the SIMPLE method

for predicting incompressible fluid flows. Int J Heat Mass Transfer
1984;7(2):147–63. http://dx.doi.org/10.1080/01495728408961817.

[19] Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamic
flows. Rech Aerosp 1994;(1):5–21. http://dx.doi.org/10.2514/6.1992-439.

[20] Wilcox DC. Reassessment of the scale-determining equation for advanced
turbulence models. AIAA J 1994;26(11):1299–310. http://dx.doi.org/10.
2514/3.10041.

[21] Smagorinsky J. General circulation experiments with the primitive equa-
tions. Mon Weather Rev 1963;91:99–164. http://dx.doi.org/10.1175/1520-
0493(1963)091<0099:GCEWTP>2.3.CO;2.

[22] Nicoud F, Ducros F. Subgrid scale stress modelling based on the square
of the velocity gradient tensor. Flow Turbul Combust 1999;62(3):183–200.
http://dx.doi.org/10.1023/A:1009995426001.

[23] DFG flow around cylinder benchmark 2D-2, time-periodic case Re=100.
URL http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_
benchmark2_re100.html.

[24] Schäfer M, Turek S, Durst F, Krause E, Rannacher R. Benchmark compu-
tations of laminar flow around a cylinder. 1996, p. 547–66. http://dx.doi.
org/10.1007/978-3-322-89849-4_39.

[25] Featflow. High performance finite elements. URL http://www.featflow.de/
en/index.html.

[26] Schmitt V, Charpin F. Pressure distributions on the ONERA-M6-wing at
transonic Mach numbers. Report AGARD Report 138, Brussels, Belgium:
NATO; 1979.

[27] Guerrero J, Sanguineti M, Wittkowski K. CFD study of the impact of
variable cant angle winglets on total drag reduction. Aerospace 2018;5.
http://dx.doi.org/10.3390/aerospace5040126.

[28] Guerrero J, Sanguineti M, Wittkowski K. Variable cant angle winglets
for improvement of aircraft flight performance. Meccanica 2020. http:
//dx.doi.org/10.1007/s11012-020-01230-1.

[29] NPARC Verification and Validation Web Site. URL https://www.grc.nasa.
gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html.

[30] Bernard P. Turbulent fluid flow. 1st ed. Wiley; 2019.
[31] Hirsch C. Numerical computation of internal and external flows. 2nd

ed. Butterworth-Heinemann; 2007.
[32] Leveque R. Finite volume methods for hyperbolic problems. Cambridge

texts in applied mathematics, 1st ed. 2002.
[33] Tucker P. Advanced computational fluid and aerodynamics. 1st ed. Cam-

bridge University Press; 2016.
[34] Laney C. Computational gasdynamics. 1st ed. Cambridge University Press;

1998.
[35] Patankar S. Numerical heat transfer and fluid flow. 1st ed. CRC Press; 1980.
[36] Wilcox DC. Turbulence modeling for CFD. 3rd ed. DCW Industries; 2010.
7

http://www.openfoam.org
http://www.openfoam.org
http://www.openfoam.org
http://dx.doi.org/10.2514/1.J053813
http://dx.doi.org/10.1007/978-3-319-16874-6
http://dx.doi.org/10.1007/978-3-319-99693-6
http://dx.doi.org/10.1007/978-3-319-99693-6
http://dx.doi.org/10.1007/978-3-319-99693-6
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb7
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb7
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb7
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb8
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb8
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb8
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb9
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb9
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb9
http://dx.doi.org/10.1016/0017-9310(72)90054-3
http://dx.doi.org/10.1016/0017-9310(72)90054-3
http://dx.doi.org/10.1016/0017-9310(72)90054-3
http://dx.doi.org/10.1016/0021-9991(86)90099-9
http://dx.doi.org/10.1016/0021-9991(86)90099-9
http://dx.doi.org/10.1016/0021-9991(86)90099-9
http://dx.doi.org/10.2514/3.8284
http://dx.doi.org/10.2514/3.8284
http://dx.doi.org/10.2514/3.8284
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://dx.doi.org/10.5281/zenodo.1422473
https://cgns.github.io/
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://dx.doi.org/10.1080/01495728408961817
http://dx.doi.org/10.2514/6.1992-439
http://dx.doi.org/10.2514/3.10041
http://dx.doi.org/10.2514/3.10041
http://dx.doi.org/10.2514/3.10041
http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/10.1023/A:1009995426001
http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html
http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html
http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html
http://dx.doi.org/10.1007/978-3-322-89849-4_39
http://dx.doi.org/10.1007/978-3-322-89849-4_39
http://dx.doi.org/10.1007/978-3-322-89849-4_39
http://www.featflow.de/en/index.html
http://www.featflow.de/en/index.html
http://www.featflow.de/en/index.html
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb26
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb26
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb26
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb26
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb26
http://dx.doi.org/10.3390/aerospace5040126
http://dx.doi.org/10.1007/s11012-020-01230-1
http://dx.doi.org/10.1007/s11012-020-01230-1
http://dx.doi.org/10.1007/s11012-020-01230-1
https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html
https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html
https://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb30
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb31
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb31
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb31
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb32
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb32
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb32
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb33
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb33
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb33
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb34
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb34
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb34
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb35
http://refhub.elsevier.com/S2352-7110(20)30368-X/sb36

	FLUBIO—An unstructured, parallel, finite-volume based Navier–Stokes and convection–diffusion like equations solver for teaching and research purposes
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Laminar flow around a cylinder
	Turbulent flow past the ONERA-M6 wing

	Software impact and conclusions
	Declaration of competing interest
	Acknowledgments
	References


